

Assistive Technology Design as a Computer Science Learning
Experience

Thomas B. McHugh
mchugh@u.northwestern.edu

Northwestern University
Evanston, Illinois

Cooper Barth
cfbarth@u.northwestern.edu
Northwestern University

Evanston, Illinois

ABSTRACT
As awareness surrounding the importance of developing accessible
applications has grown, work to integrate inclusive design into
computer science (CS) curriculum has gained traction. However,
there remain obstacles to integrating accessibility into introduc-
tory CS coursework. In this paper, we discuss current challenges
to building assistive technology and the fndings of a formative
study exploring the role of accessibility in an undergraduate CS
curriculum. We respond to the observed obstacles by presenting
V11, a cross-platform programming interface to empower novice
CS students to build assistive technology. To evaluate the efective-
ness of V11 as a CS and accessibility learning tool, we conducted
design workshops with ten undergraduate CS students, who brain-
stormed solutions to a real accessibility problem and then used
V11 to prototype their solution. Post-workshop evaluations showed
a 28% average increase in student interest in building accessible
technology, and V11 was rated easier to use than other accessibil-
ity programming tools. Student refections indicate that V11 can
be an accessibility learning tool, while also teaching fundamental
Computer Science concepts.

CCS CONCEPTS
• Human-centered computing → Accessibility; • Social and
professional topics → Computing education.

KEYWORDS
accessibility; assistive technology; computer science education;
allyship; inclusive design

ACM Reference Format:
Thomas B. McHugh and Cooper Barth. 2020. Assistive Technology Design
as a Computer Science Learning Experience. In The 22nd International ACM
SIGACCESS Conference on Computers and Accessibility (ASSETS ’20), October
26–28, 2020, Virtual Event, Greece. ACM, New York, NY, USA, 4 pages. https:
//doi.org/10.1145/3373625.3417081

1 INTRODUCTION
Work to improve the accessibility of software has focused on part-
nerships, accreditation, and the improvement of standards and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specifc permission
and/or a fee. Request permissions from permissions@acm.org.
ASSETS ’20, October 26–28, 2020, Virtual Event, Greece
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7103-2/20/10. . . $15.00
https://doi.org/10.1145/3373625.3417081

guidelines [1, 13]. However, the presentation of accessibility simply
as a list of standards and best practices undercuts the importance of
thoughtful and inclusive design, relegating accessibility to an after-
thought during software development. This is especially apparent
in computer science education; the CS community must change
how students are educated if accessibility is to become a core part of
the design process. These concerns have spurred work to integrate
inclusive design skills such as design for user empowerment [8],
empathy building [9], and the creation of accessible web [10] and
native applications [3] into curriculum.

Even so, there remains obstacles to introducing accessibility into
computer science curricula. While web programming is often used
to introduce students to accessibility, some computer scientists
feel that web programming is not appropriate for an introductory
CS course [10]. However, accessibility pedagogy must seamlessly
integrate within any CS learning experience, regardless of under-
lying computational platform. Additionally, it is often difcult for
students without a disability to understand how people with dis-
abilities interact with assistive technology [4]. While we need to
foster a culture of allyship in our CS learning environments, activi-
ties that try to simulate a disability, such as wearing a blindfold to
simulate a visual impairment, disenfranchise the daily challenges
that a person with a disability faces.

We use this background to motivate the design of V11, a program-
ming interface for building assistive technology in the JavaScript
language. To empower novice CS students to design new assistive
technologies, we abstract platform-dependent accessibility inter-
faces into a DOM-like structure for querying and modifying the
native accessibility tree. Additionally, V11 exposes procedures to
present data to users through both audio and visual modalities. Due
to its similarity with web programming concepts and its abstraction
of advanced programming systems, such as audio processors and
interface trees, both web and systems programming classes can
integrate V11 into existing curricula.

V11 was evaluated by undergraduate CS students (n = 10) who
participated in a design workshop to brainstorm and prototype an
assistive technology solution to a real accessibility challenge. In
addition to a 28% average increase in student interest in building
accessible technology, participants highlighted the efectiveness
of V11 as an easy-to-learn platform for exploring accessibility and
allyship through programming and learning new programming
concepts. These results afrm that accessibility can, and should, be
integrated into CS coursework. We then discuss our plans to grow
V11 to broaden access to assistive technology.

https://doi.org/10.1145/3373625.3417081
https://doi.org/10.1145/3373625.3417081
https://doi.org/10.1145/3373625.3417081
mailto:cfbarth@u.northwestern.edu
mailto:permissions@acm.org
mailto:mchugh@u.northwestern.edu
mailto:cfbarth@u.northwestern.edu
https://doi.org/10.1145/3373625.3417081
mailto:permissions@acm.org
https://doi.org/10.1145/3373625.3417081
mailto:mchugh@u.northwestern.edu

ASSETS ’20, October 26–28, 2020, Virtual Event, Greece

2 NEEDFINDING STUDY
To understand students’ exposure to accessibility, we surveyed
16 undergraduate CS students, recruited through university mail-
ing lists. Participants included four freshmen, three sophomores,
fve juniors, and four seniors. Five students noted familiarity with
an accessibility standard such as WCAG or WAI. When refect-
ing on these standards, four students noted learning these con-
cepts through a university class, while two students noted learning
through self-exploration and two students noted learning through
an internship. Nine students had completed an HCI course. Six of
those students’ courses included accessibility programming lessons.
Finally, fve students had completed a course that included lessons
on disability studies.

When asked to rank the frequency of classes that included acces-
sibility topics in HCI/Design (HCID) versus non-HCID CS courses,
eleven students stated that discussions including accessibility top-
ics are never brought up in non-HCID CS courses (fgure 1). On
average, students ranked that discussions surrounding accessibility
occurred 26.25% more frequently in HCID CS courses than non-
HCID CS courses (t=-4.05; p=0.0001). While larger studies will give
better insights into accessibility exposure in CS education, this
study identifes that there is a lack of non-HCID CS curriculum
that incorporates accessibility. While this is quite disappointing
given the applicability of accessibility in systems [5, 14], program-
ming language [6, 12, 15], and machine learning [2, 16] courses,
the current literature and critiques of accessibility in CS curricula
reinforce these fndings.

Figure 1: Accessibility discussion frequency in CS courses.

3 V11 DESIGN & FEATURES
Our formative work identifed a clear need to develop accessibility-
focused curricula in a wider range of computer science courses and
disciplines. However, there remains a high level of complexity in
tools used to create accessible applications in non-web program-
ming environments. To address this barrier, we designed a program-
ming interface to simplify the creation of assistive technology that
is available across all major platforms, easy to learn for a new CS
student, and can be integrated within existing introductory curric-
ula. Given these design requirements, we chose to abstract core
assistive services from MacOS’s AXUIElement, Windows’ IUIAu-
tomation, and Linux’s ATK into a platform-agnostic C++ library

McHugh and Barth

Figure 2: V11 platform software architecture.

for accessibility (fgure 2). While this is useful in solving our frst
requirement, there remains constraints that prevent many new
CS students from engaging with the tool. C++ is a difcult lan-
guage to learn, and many courses start with high-level languages
such as JavaScript, Python, or Java when teaching introductory
CS concepts. Additionally, C++ was not designed for querying and
manipulating tree-like user interfaces and it has no native event
system for performing actions when users open applications or
interact with interface elements, both important components of
assistive technologies.

Therefore, we built a Node.JS JavaScript wrapper for the assistive
core library. Because of JavaScript’s use on the web, both systems
and web courses have the potential to incorporate this tool into
their curriculum. Furthermore, it builds upon JavaScript’s capabil-
ities for querying and manipulating the Document Object Model
(DOM), which has a similar structure to the native accessibility tree.
This parallel provides a familiarity to the programming interface,
as many API design decisions were based of of equivalent APIs for
JavaScript’s DOM interface. The resulting programming interface
is 1 V11 , a native JavaScript library that provides a core set of com-
ponents for creating assistive technology: listening for keyboard
and application events, retrieving system information, querying
and modifying an application’s accessibility tree, and presenting
information to users in both visual and auditory modalities.

4 STUDENT DESIGN WORKSHOP
We then designed a workshop for students to brainstorm a solution
to a real accessibility problem and to prototype that solution using
V11. We recruited participants from our needfnding study (n = 10).
Our workshop utilized a modifed version of the Google Design
Sprint method [7]. Students used the Map, Sketch, Decide, Prototype,
Test structure, but the session was conducted individually for sched-
uling fexibility and we condensed the workshop to 90 minutes. 10
minutes were spent exploring V11 through a demonstration.

Then, participants read a brief that described the accessibility
challenge they would design for. It was critical that V11 was eval-
uated within the context of solving a real accessibility challenge.
Therefore, the workshop’s design brief synthesized Saha and Piper’s
exposition of challenges for visually impaired audio engineers who
use desktop audio editors [11]. Specifcally, the brief focused on one

1Source code and documentation can be found at:
https://github.com/InclusiveTechNU/v11

https://github.com/InclusiveTechNU/v11
https://github.com/InclusiveTechNU/v11

 Assistive Technology Design as a Computer Science Learning Experience

challenge, that working with multiple tracks or streams of audio is
difcult within audio editing applications. Participants’ goal dur-
ing the workshop was to use the structured design methodology
to ideate and implement a solution to one aspect of this design
problem for the GarageBand application.

Afterwards, 15 minutes were spent brainstorming solutions. Par-
ticipants would start by writing many ideas and fnish by refning
them into 1-2 insights. The remaining time would be used to im-
plement one insight using V11. While instructors could answer
questions and give suggestions to a stuck participant, they were not
allowed to write any code. Finally, participants flled out a refection
about V11 and their creation.

5 RESULTS
During the workshops, each participant generated an average of
4 designs and combined total of 42 (fgure 3). We coded the ideas
resulting in three types of projects. Information retrieval interfaces
(IRIs) are systems that retrieve the state of multiple tracks without
using the GUI. Example interfaces included new keyboard shortcuts
and conversational interfaces. These interfaces were used to retrieve
diferent information, such as volume levels, mute status, and track
type. Task automation interfaces (TAIs) were the most common
creation. TAIs reapplied IRI interfaces to automate complex tasks,
such as applying efects to tracks, toggling mute, adjusting the vol-
ume, and providing shortcuts for actions. Command line interfaces
(CLIs) were used as IRIs and TAIs. These systems were declared
within a terminal, and they use a command + arguments format.

Figure 3: Designs from student brainstorming.

Participants rated the efectiveness of the workshop for teaching
accessibility highly, with an average of 4.6/5. Additionally, before
the study, students rated their interest in accessibility technology
an average of 2.7/5. After the study, this increased to 4.1/5; a 28%
increase in interest (t=-3.21; p=0.0024). The ease of learning prior-
used accessibility tools was rated on average 2.7/5 and participants
rated the ease of learning V11 on average 4.3/5; a 32% increase in
ease of learning (t=-3.379; p=0.0016).

In written refections, students noted that they found V11 excit-
ing because it was familiar and they would be unsure of how to
implement their designs without V11. When asked how they would
build their tool without V11, one student wrote: "I honestly would

ASSETS ’20, October 26–28, 2020, Virtual Event, Greece

not know where to start." Many comments similarly identifed that
V11 was very familiar to them. "V11 felt very similar to the DOM
model of online websites...I happened to have spent some time using
plain javascript as well as jQuery, so this was not a super new concept
to me - it felt familiar."

Workshop participants also found solving accessibility chal-
lenges to be very worthwhile. One student described how they
would, "Love to know more about accessibility issues with technolo-
gies I take for granted," while another student wrote that, "I have
much more interest than I did before. I think it’s not only a fun tech-
nology but it also is a great way to help those in need." Many students
saw connections to their current CS coursework, with one student
fnding multiple courses that she could connect the workshop back
to: "I actually could see it in an OS class, a web dev class, and an
accessibility-focused class. For OS, for example, the idea would be to
use V11 to be able to inspect, access, and modify system elements...In
web dev, it would be a cool extension to learn about the DOM."

While much of the feedback was positive from the refections,
there remains room for improvement. Some participants noted that
error messages were not always helpful. Additionally, there remains
a learning curve. One participant wrote: "I wish there were more
examples and code snippets," while another student described how,
"At frst I was confused on how to access certain elements...However,
after about an hour or so, I actually got the hang of it and was working
much faster."

6 DISCUSSION & FUTURE WORK
Our work shows that there is a need to integrate accessibility into
CS curricula and that V11 could make this adoption valuable and
enjoyable for students. While our study provides exciting results,
there is more that can be done. Participants indicated areas of im-
provement that need to be addressed and a study that evaluates
V11’s usage in a real learning environment will resolve questions
around the study’s impact from experimental observation. Addi-
tionally, while developing accessibility allyship through CS remains
an important moral obligation, it is also critical that we empower
non-programmers with disabilities to build solutions to the prob-
lems they experience using tools that do not require programming.
By embracing this responsibility within future designs of V11, we
hope to foster a community of self-empowered users and allies who
build and share assistive technology to create more equitable digital
experiences.

ACKNOWLEDGMENTS
We thank Anne Marie Piper, Abir Saha, and all the students who
participated in our study. This work was supported in part by NSF
grant IIS-1901456.

REFERENCES
[1] 2018. Web Content Accessibility Guidelines (WCAG) 2.1. https://www.w3.org/

TR/WCAG21/
[2] Jefrey P Bigham and Patrick Carrington. 2018. Learning from the Front: People

with Disabilities as Early Adopters of AI.
[3] Robert F Cohen, Alexander V Fairley, David Gerry, and Gustavo R Lima. 2005.

Accessibility in introductory computer science. ACM SIGCSE Bulletin 37, 1 (2005),
17–21.

[4] André Pimenta Freire, Renata Pontin de Mattos Fortes, Debora Maria Bar-
roso Paiva, and Marcelo Augusto Santos Turine. 2007. Using screen readers

https://www.w3.org/TR/WCAG21/
https://www.w3.org/TR/WCAG21/
https://www.w3.org

ASSETS ’20, October 26–28, 2020, Virtual Event, Greece

to reinforce web accessibility education. ACM SIGCSE Bulletin 39, 3 (2007),
82–86.

[5] Andres Gonzalez and Loretta Guarino Reid. 2005. Platform-independent ac-
cessibility api: Accessible document object model. In Proceedings of the 2005
International Cross-Disciplinary Workshop on Web Accessibility (W4A). 63–71.

[6] Alex Hadwen-Bennett, Sue Sentance, and Cecily Morrison. 2018. Making Pro-
gramming Accessible to Learners with Visual Impairments: A Literature Review.
International Journal of Computer Science Education in Schools 2, 2 (2018), n2.

[7] Jake Knapp, John Zeratsky, and Braden Kowitz. 2016. Sprint: How to solve big
problems and test new ideas in just fve days. Simon and Schuster.

[8] Richard E Ladner. 2015. Design for user empowerment. interactions 22, 2 (2015),
24–29.

[9] Cynthia Putnam, Maria Dahman, Emma Rose, Jinghui Cheng, and Glenn Brad-
ford. 2015. Teaching accessibility, learning empathy. In Proceedings of the 17th
International ACM SIGACCESS Conference on Computers & Accessibility. 333–334.

[10] Brian J Rosmaita. 2006. Accessibility frst! A new approach to web design. In
Proceedings of the 37th SIGCSE technical symposium on Computer science education.
270–274.

McHugh and Barth

[11] Abir Saha and Anne Marie Piper. 2020. Understanding Audio Production Practices
of People with Vision Impairments. In The 22nd International ACM SIGACCESS
Conference on Computers and Accessibility (Athens, Greece) (ASSETS ’20). Associ-
ation for Computing Machinery, New York, NY, USA. To appear.

[12] Jaime Sánchez and Fernando Aguayo. 2005. Blind learners programming through
audio. In CHI’05 extended abstracts on Human factors in computing systems. 1769–
1772.

[13] Kristen Shinohara, Saba Kawas, Andrew J Ko, and Richard E Ladner. 2018. Who
teaches accessibility? A survey of US computing faculty. In Proceedings of the
49th ACM Technical Symposium on Computer Science Education. 197–202.

[14] Robert Sinclair, Patricia M Wagoner, and Brendan McKeon. 2008. Accessibility
system and method. US Patent 7,434,167.

[15] Andreas Stefk and Richard Ladner. 2017. The quorum programming language.
In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education. 641–641.

[16] Marcelo Worsley, David Barel, Lydia Davison, Thomas Large, and Timothy Mwiti.
2018. Multimodal interfaces for inclusive learning. In International Conference on
Artifcial Intelligence in Education. Springer, 389–393.

	Abstract
	1 Introduction
	2 Needfinding Study
	3 V11 Design & Features
	4 Student Design Workshop
	5 Results
	6 Discussion & Future Work
	Acknowledgments
	References

