
ASSETS: U: Constructing Agency and Usability Through
Community-Driven Assistive Technology Design

Thomas B. McHugh
mchugh@u.northwestern.edu

Northwestern University
Evanston, Illinois

ABSTRACT
Despite assistive technologies existing to help people with disabil-
ities interact with software, these tools are often hard to use and
not personalized to what a user individually needs. In response to
these challenges, new work in the maker community has sought
to empower people with disabilities to build their own assitive
technologies and to create agency over how one can interact with
technology. We discuss current challenges to building assistive
technology and overcome these obstacles by presenting V11, a sim-
ple cross-platform programming interface to enable the creation
of community-driven assistive technology. To evaluate the effec-
tiveness of V11 in environments with novice programmers, we
conducted design workshops with undergraduate CS students, who
brainstormed solutions to a real accessibility problem and then used
V11 to prototype their idea. We found that V11 can help students
with limited programming experience build complex assistive tech-
nologies and we discuss next steps to engage communities in the
creation of these personalized assistive tools.

CCS CONCEPTS
• Human-centered computing → Accessibility; • Social and
professional topics→ Computing education.

KEYWORDS
accessibility; assistive technology; making; computer science edu-
cation; allyship; inclusive design

1 PROBLEM & MOTIVATION
Through the transformation of computing into a tool for social
connection and creativity, the opportunity to democratize creative
expression and civic engagement [25] is inherently an exhilarating
mission that we see has graspedmuch of the rhetoric emerging from
the tech industry [34]. And yet, whether it be the CS4All movement
[51] or digital media’s participatory culture [9], the moniker that
these new systems have been built "for all" seems to leave out the
differences and restrictions that many people with disabilities face
when trying to access and participate in digital ecosystems [15].
While the tools and design methods to make one’s applications
and websites accessible certainly exist, the responsibility to uphold
social values through computing [15], such as accessibility and
inclusion, is often left to others, if not entirely forgotten. This is
apparent in both a quantitative sense, where 98.1% of the top 1
million website homepages have at least one accessibility guideline
failure [53], and in more nuanced accessible design challenges, such
as creating inclusive collaborative awareness in real-time editing
[13] and building accessible interfaces for professional audio editors

[44]. One quickly realizes that there is no universal accessibility and
that customized solutions are required to truly build for everyone
[15].

Given this responsibility to create access through computing,
it is critical to include accessibility curriculum into computer sci-
ence education. This has spurred work to integrate inclusive design
skills such as design for user empowerment [29], empathy building
[39], and the creation of accessible web [43] and native applications
[10] into coursework. However, despite these new ways of intro-
ducing accessibility, students are often not taught effectively and
even when they are, do not later apply accessibility skills they have
learned in practice [55]. Additional barriers to promoting accessi-
bility through education, such as the difficulty for students without
a disability to understand how people with disabilities interact with
technology [17], means that the tools and curricula used to teach ac-
cessibility need to support both students and community members
who engage in the design process of new accessible technologies.

We use this background to motivate the design of V11, a program-
ming interface for building assistive technology in the JavaScript
language. Due to accessibility needing to be individualized and the
difficulties for even many experienced programmers to build ac-
cessible software, we designed V11 to empower community-driven
assistive technology design that could help anyone with a little pro-
gramming background to create agency over the way they can in-
teract with a computer. We accomplish this by abstracting platform-
dependent accessibility interfaces into a DOM-like structure for
querying and modifying the native accessibility tree. Additionally,
V11 exposes procedures to present data to users through both audio
and visual modalities. Due to its similarity with web programming
concepts and its abstraction of advanced programming systems,
such as audio processors and interface trees, both web and systems
programming classes can integrate V11 into existing curricula.

V11 was evaluated by novice CS students who participated in
a design workshop to brainstorm and prototype an assistive tech-
nology solution to a real accessibility challenge. Participants high-
lighted the effectiveness of V11 as an easy-to-learn platform for
exploring accessibility through programming and found it fun and
simple to go from ideation to implementation of an assistive technol-
ogy. These results affirm that accessibility can be created even with
limited programming knowledge. We then discuss our next steps
to grow V11 and broaden access to customizable and personalized
assistive technology.

2 BACKGROUND & RELATEDWORK
This work builds on insights into the design of APIs and program-
ming languages that has been applied to assistive technology design,
do-it-yourself (DIY) accessibility, and inclusive making.



McHugh

2.1 API & Programming Language Design
There is a rich history of applying design methods to the creation
of APIs and programming languages with a goal to increase these
tools’ usability for education, creativity, and social impact. Pane et
al. introduce programming languages as user interfaces between
a computer and a programmer, and that standard design meth-
ods can be leveraged to create more usable languages [37]. More
formal methods for designing programming languages have been
introduced [35], but these continue to be based on human-centered
approaches to designing a range of digital interfaces. Thesemethods
have been applied to projects that have taken many different views
to what a programming language is [27]. Expressive languages like
Scratch [40] are designed to engage young child in the creation of
digital media, while languages like Gidget [30] empower computer
science students who might be intimidated by debugging and error
messages.

As frameworks and toolkits, also known as application program-
ming interfaces (APIs), become common layers on top of program-
ming languages for functionality and reusability [36], the methods
for designing programming languages have been adapted to the
creation of APIs. API designers must take into account a range
of factors when creating these interfaces, including performance,
power, and usability [50]. Myers and Stylos survey the effective
techniques for designing APIs for usability [36] and find many
shared principles from programming language design. Using these
methods, our work builds on this field to consider how current
accessibility API design patterns work against enabling a low-floor
to building assistive technologies, and how more usable and famil-
iar APIs can be created to assist in developing community-driven
assistive technologies.

2.2 Assistive Technology Design
While there are many types of physical and digital devices that help
people with disabilities interact with computers and the world, our
work begins by discovering opportunities for assistive technology
that provide accessible interfaces to digital devices. Common tools
that currently exist include screen readers, magnifiers, braille dis-
plays, conversation interfaces, and single-button controllers. These
tools are often built and depend on a specific operating system.
For instance, when users rely on a screen reader to control their
computer through auditory descriptions of a user interface, ma-
cOS users will use VoiceOver [3], while Windows users may use
Narrator [31], NVDA [1], or JAWS [47].

In addition to these built in tools, software developers are pro-
vided with interfaces to build their own digital assistive technolo-
gies. Most operating systems expose low-level APIs [4, 14, 16, 18, 20,
32, 33] to retrieve accessible representations of computer programs,
termed the accessibility tree, and these interfaces allows the tree to
be presented through assistive technologies. While these interfaces
can enable advanced technologies, like screenreaders, they often re-
quire a depth of knowledge in systems programming and platform-
related frameworks to use. For instance, the Apple AX APIs require
the knowledge of both the C programming language [42] and the
Core Foundation framework [5]. These APIs are also almost always
dependent on the platform, i.e. the Android, Windows, Mac, and
Linux APIs are all different. In response to some of the difficulties

to observing and manipulating the accessibility tree, higher-level
scripting languages like AppleScript [12] and JavaScript for Automa-
tion [2] have been created, which provide access to the accessibility
tree’s data without the requirement to master low-level systems
frameworks. Despite this, these abstracted APIs face other restric-
tions, such as continuing to be platform-dependent and providing
a limited syntax that does not take advantage of the expressive
nature of these scripting languages.

V11 takes a "write once run anywhere" approach to accessibility
and we synthesize these APIs into a design that allows for new
comers to understand accessibility trees and to create advanced ap-
plications that would be difficult to write with existing accessibility
APIs. Rather than creating a long list of prerequisite knowledge
to then begin understanding how accessibility on digital devices
works, we take the stance that accessibility is in itself a nuanced
topic that should be introduced with as little overhead as possible.
While some accessibility APIs often seem forgotten or bare-bones,
V11 is purposefully built to be opinionated and understandable for
our project’s stakeholders.

2.3 DIY Accessibility & Inclusive Making
While assistive technologies to interact with computers do exist,
the limited usefulness and satisfaction of these tools has spurred
work to empower people with disabilities to be actively involved
as inventors and collaborators of assitive technologies. Philips and
Zhao note that 29.3% of assistive technologies are abandoned due
to poor performance. They advise that including users’ needs into
the design process is required to create effective technologies [38].
Bigham highlights that new technologies, particularly artificial
intelligence, are often placed onto people with disabilities, making
them become early adopters [6]. To prevent these technologies
from limiting the agency of people with disabilities, he argues
that we must build on the lived experiences that these users can
provide. Ladner also introduces the design for user empowerment
methodology [29], which works to increase self-determination for
people with disabilities by including them in all components of the
design process.

In parallel, the "maker" community has created tools and en-
vironments that foster personal expression and powerful ideas
through one’s lived experiences. Blickstein introduces expressive
technology as an agent of emancipation and humanization that can
harness a student’s creativity and agency in their own communities
[7]. Later, he also highlights the history of the maker movement,
and argues that students can use computational tools to construct
culturally meaningful artifacts that solve personal problems [8].
Kuznetsov and Paulos describe the low barrier DIY communities
provide to fully expressing individual creativity through solving
problems in these environments [28]. Vossoughi et al. push back
against stereotypes of the maker community, and brings to light the
importance of integrating students’ cultural histories into making
activities [52].

Research at this intersection of making and accessibility has
enabled opportunities for people with disabilities to create more
personalized and usable assistive technologies, while also develop-
ing agency and control over the technologies that they use. Hurst
and Kane present new accessible making tools as an opportunity



ASSETS: U: Constructing Agency and Usability Through Community-Driven Assistive Technology Design

to empower individuals to create their own personalized assistive
technologies [23]. Hurst and Tobias build on these findings through
design recommendations [24] for DIY assistive technologies that
showcase many people’s excitement at designing new assistive
technologies and that custom built assistive technology can be less
expensive and work better than traditional technologies. Hamidi
et al. also introduces Sensebox [22], a DIY platform for creating
audio interfaces for therapy, and argue that providing maker tools
that are simple, customizable, affordable, and accessible, allows
audio therapists to create more personalized experiences with their
clients. Worsley et al. reflects on the creation of MultiCAD and
Tangicraft, and contend that the development of multimodal AI
technologies can democratize the opportunities for people with
disabilities to build their own assistive technologies [54].

V11 builds on the ideas and technologies from the DIY accessi-
bility and maker communities through providing simple and usable
APIs for building assistive technologies. Similar to tools like Ar-
duino and Makey-Makey [11], the creative experiences that making
can initiate are enabled by easy to learn technologies with a low-
floor of entry, a high-ceiling of opportunity, and a wide variety of ap-
plications [41]. While it is important to note that all areas of making
should be accessible to people with disabilities, and our work is not
trying to define assistive technology creation as the singular oppor-
tunity for people with disabilities in the maker community, the life
experiences and limited usability of current assistive technologies
create an opportunity for maker culture to spur a self-determined
future for assitive technologies where community-driven develop-
ment can create highly meaningful and individualized accessible
digital experiences.

3 UNIQUENESS OF THE APPROACH
Our work is composed of three parts: a formative work study to
explore the opportunities in designing tools for accessibility, the
prototyping of an accessibility API, and an evaluation of our API
design through a workshop with students.

3.1 Formative Work
To better understand the educational landscape of accessibility in
computer science, we surveyed 16 undergraduate CS students about
their experiences and tool usage when designing in classes for ac-
cessibility. We recruited these students through university mailing
lists. Participants included four freshmen, three sophomores, five
juniors, and four seniors.

We separated the survey into three sections: computer science
experience, accessibility experience, and knowledge of content
creation applications. Computer science experience questions con-
textualized our study participants by asking them about how many
CS courses they had taken, what languages they were familiar with,
and what their experience with human-computer interaction and
design was. Accessibility experience questions explored whether,
and where, any of our participants had thought about, or engaged
in the usage, of accessibility tools and design practices and what
specific tools they had previously used to create accessible designs.
Finally, we asked questions about the participant’s knowledge on a
range of professional content creation tools, such as GarageBand,
iMovie, and the Adobe Creative Cloud suite, to better understand

what professional applications the study participants could engage
with in the design of an assistive technology to evaluate our work.

3.2 API Design
Building on the existing assistive frameworks and APIs that exist
and the feedback for opportunities in accessibility from our for-
mative work, we began iteratively designing an API for building
assistive technology. We wanted to mix what students already knew
with the existing platforms for assitive technology that current ex-
isted, so that everyone from community members, students, and
professionals could engage in the assistive technology design pro-
cess. To have small iterative tests of new prototypes, we worked
with a number of researchers who were building their own assistive
technologies to implement and evaluate features using our proto-
type APIs. Using the feedback from our research peers, we then
adapted the API.

3.3 Student Design Workshop
Once satisfied with our initial version of the API, we then designed
a workshop for students to brainstorm a solution to a real acces-
sibility problem and to prototype that solution using the V11 API.
We recruited participants from our needfinding study (n = 10). Our
workshop utilized a modified version of the Google Design Sprint
method [26]. Students used the Map, Sketch, Decide, Prototype, Test
structure, but the session was conducted individually for schedul-
ing flexibility and we condensed the workshop to 90 minutes. 10
minutes were spent exploring V11 through a demonstration.

Then, participants read a brief that described the accessibility
challenge they would design for. It was critical that V11 was eval-
uated within the context of solving a real accessibility challenge.
Therefore, the workshop’s design brief synthesized Saha and Piper’s
exposition of challenges for visually impaired audio engineers who
use desktop audio editors [45]. Specifically, the brief focused on one
challenge, that working with multiple tracks or streams of audio is
difficult within audio editing applications. Participants’ goal dur-
ing the workshop was to use the structured design methodology
to ideate and implement a solution to one aspect of this design
problem for the GarageBand application.

Afterwards, 15 minutes were spent brainstorming solutions. Par-
ticipants would start by writing many ideas and finish by refining
them into 1-2 insights. The remaining time would be used to im-
plement one insight using V11. While instructors could answer
questions and give suggestions to a stuck participant, they were not
allowed to write any code. Finally, participants filled out a reflection
about V11 and their creation.

4 RESULTS & CONTRIBUTIONS
Through our formative work, we showcase the need to expose stu-
dents to opportunities in accessibility across the multiple sub-fields
of computer science. Given the lessons and insights we found, we
then argue for and introduce V11, a design for a shared accessi-
bility API that can empower students and communities to embed
their lived experiences in the creation of personalized assistive
technology. We evaluate V11 through a design workshop where
introductory computer science students worked on building real
assistive technology using V11. Finally, we discuss the findings of



McHugh

our initial work with V11 and opportunities that we continue to
explore in its design and applications.

4.1 Formative Work

Figure 1: Accessibility discussion frequency in CS courses.

Five students noted familiarity with an accessibility standard
such as WCAG or WAI. When reflecting on these standards, four
students noted learning these concepts through a university class,
while two students noted learning through self-exploration and
two students noted learning through an internship. Nine students
had completed an HCI course. Six of those students’ courses in-
cluded accessibility programming lessons. Finally, five students had
completed a course that included lessons on disability studies.

When asked to rank the frequency of classes that included acces-
sibility topics in HCI/Design (HCID) versus non-HCID CS courses,
eleven students stated that discussions including accessibility top-
ics are never brought up in non-HCID CS courses (figure 1). On
average, students ranked that discussions surrounding accessibility
occurred 26.25% more frequently in HCID CS courses than non-
HCID CS courses (t=-4.05; p=0.0001). While larger studies will give
better insights into accessibility exposure in CS education, this
study identifies that there is a lack of non-HCID CS curriculum
that incorporates accessibility. While this is quite disappointing
given the applicability of accessibility in systems [19, 48], program-
ming language [21, 46, 49], and machine learning [6, 54] courses,
the current literature and critiques of accessibility in CS curricula
reinforce these findings.

4.2 V11 Design & Features
Our formative work identified a clear need to develop accessibil-
ity that were similar to introductory tools found in the computer
science classroom. However, there remains a high level of com-
plexity in tools used to create accessible applications in non-web
programming environments. To address this barrier, we designed
a programming interface to simplify the creation of assistive tech-
nology that is available across all major platforms, easy to learn
for a new CS student, and can be integrated within existing intro-
ductory curricula. Given these design requirements, we chose to
abstract core assistive services from MacOS’s AXUIElement, Win-
dows’ IUIAutomation, and Linux’s ATK into a platform-agnostic
C++ library for accessibility (figure 2). While this is useful in solving

Figure 2: V11 platform software architecture.

our first requirement, there remains constraints that prevent many
new CS students from engaging with the tool. C++ is a difficult
language to learn, and many courses start with high-level languages
such as JavaScript, Python, or Java when teaching introductory CS
concepts. Additionally, C++ was not designed for querying and
manipulating tree-like user interfaces and it has no native event
system for performing actions when users open applications or
interact with interface elements, both important components of
assistive technologies.

Therefore, we built a Node.JS JavaScript wrapper for the assistive
core library. Because of JavaScript’s use on the web, both systems
and web courses have the potential to incorporate this tool into
their curriculum. Furthermore, it builds upon JavaScript’s capabil-
ities for querying and manipulating the Document Object Model
(DOM), which has a similar structure to the native accessibility tree.
This parallel provides a familiarity to the programming interface,
as many API design decisions were based off of equivalent APIs for
JavaScript’s DOM interface. The resulting programming interface
is V111, a native JavaScript library that provides a core set of com-
ponents for creating assistive technology: listening for keyboard
and application events, retrieving system information, querying
and modifying an application’s accessibility tree, and presenting
information to users in both visual and auditory modalities.

4.3 Student Design Workshops
During the workshops, each participant generated an average of
4 designs and combined total of 42 (figure 3). We coded the ideas
resulting in three types of projects. Information retrieval interfaces
(IRIs) are systems that retrieve the state of multiple tracks without
using the GUI. Example interfaces included new keyboard shortcuts
and conversational interfaces. These interfaces were used to retrieve
different information, such as volume levels, mute status, and track
type. Task automation interfaces (TAIs) were the most common
creation. TAIs reapplied IRI interfaces to automate complex tasks,
such as applying effects to tracks, toggling mute, adjusting the vol-
ume, and providing shortcuts for actions. Command line interfaces
(CLIs) were used as IRIs and TAIs. These systems were declared
within a terminal, and they use a command + arguments format.

Participants rated the effectiveness of the workshop for teaching
accessibility highly, with an average of 4.6/5. Additionally, before
1Source code and documentation can be found at:
https://github.com/InclusiveTechNU/v11

https://github.com/InclusiveTechNU/v11


ASSETS: U: Constructing Agency and Usability Through Community-Driven Assistive Technology Design

Figure 3: Designs from student brainstorming.

the study, students rated their interest in accessibility technology
an average of 2.7/5. After the study, this increased to 4.1/5; a 28%
increase in interest (t=-3.21; p=0.0024). The ease of learning prior-
used accessibility tools was rated on average 2.7/5 and participants
rated the ease of learning V11 on average 4.3/5; a 32% increase in
ease of learning (t=-3.379; p=0.0016).

In written reflections, students noted that they found V11 excit-
ing because it was familiar and they would be unsure of how to
implement their designs without V11. When asked how they would
build their tool without V11, one student wrote: "I honestly would
not know where to start." Many comments similarly identified that
V11 was very familiar to them. "V11 felt very similar to the DOM
model of online websites...I happened to have spent some time using
plain javascript as well as jQuery, so this was not a super new concept
to me - it felt familiar." Many students also saw connections to their
current CS coursework, with one student finding multiple courses
that she could connect the workshop back to: "I actually could see
it in an OS class, a web dev class, and an accessibility-focused class.
For OS, for example, the idea would be to use V11 to be able to inspect,
access, and modify system elements...In web dev, it would be a cool
extension to learn about the DOM."

Workshop participants also found solving accessibility chal-
lenges to be very worthwhile. One student described how they
would, "Love to know more about accessibility issues with technolo-
gies I take for granted," while another student wrote that, "I do have
an interest in building assistive technology, but for a while I wasn’t
really sure if there were too many frameworks out there...V11 is great
because it opened my eyes to the process and convinced me that these
technologies do exist!" While not all students were convinced that
they wanted to continue building assistive technology, some did see
connections in the framework that would help them support more
accessibility features in their own software. One student noted:
"Even if my end goal is not to make [an assistive technology], I can
always implement these ideas into projects of my own and constantly
think of ways to better my projects."

While much of the feedback was positive from the reflections,
there remains room for improvement. Some participants noted that
error messages were not always helpful. Additionally, there remains
a learning curve. One participant wrote: "I wish there were more
examples and code snippets," while another student described how,

"At first I was confused on how to access certain elements...However,
after about an hour or so, I actually got the hang of it and was working
much faster."

4.4 Discussion & Future Work
In the design workshops, students built new assistive technologies
from ideation through implementation. Given the novice nature of
our participants’ programming skills, this highlights an exciting
first step at introducing assistive technology design with a very low
overhead. Many of these prototypes would have required hundreds
of lines of code in a native accessibility API, but were written in
less than twenty lines with V11.

While our study provides exciting results, there is far more work
to reach our goal of community-driven assistive technology. Par-
ticipants indicated areas of improvement in the design of V11 that
need to be addressed. Additionally, while developing accessibility
allyship through CS remains an important moral obligation, it is
also critical that we empower non-programmers with disabilities to
build solutions to the problems they experience by providing tools
that do not require programming or by providing curriculum that
targets an introductory CS curriculum towards the low overhead
of V11.

REFERENCES
[1] NV Access. 2021. NV Access. https://www.nvaccess.org
[2] Apple. 2015. Introduction to JavaScript for Automation Release

Notes. https://developer.apple.com/library/archive/releasenotes/
InterapplicationCommunication/RN-JavaScriptForAutomation/Articles/
Introduction.html#//apple_ref/doc/uid/TP40014508

[3] Apple. 2021. Apple Accessibility - Vision. https://www.apple.com/accessibility/
vision/

[4] Apple. 2021. AXUIElement.h. https://developer.apple.com/documentation/
applicationservices/axuielement_h?language=objc

[5] Apple. 2021. Core Foundation. https://developer.apple.com/documentation/
corefoundation?language=objc

[6] Jeffrey P Bigham and Patrick Carrington. 2018. Learning from the Front: People
with Disabilities as Early Adopters of AI.

[7] Paulo Blikstein. 2008. Travels in Troy with Freire: Technology as an agent of
emancipation. In Social Justice Education for Teachers. Brill Sense, 205–235.

[8] Paulo Blikstein. 2013. Digital fabrication and ‘making’in education: The democ-
ratization of invention. FabLabs: Of machines, makers and inventors 4, 1 (2013),
1–21.

[9] Nico Carpentier. 2011. Media and participation: A site of ideological-democratic
struggle. Intellect.

[10] Robert F Cohen, Alexander V Fairley, David Gerry, and Gustavo R Lima. 2005.
Accessibility in introductory computer science. ACM SIGCSE Bulletin 37, 1 (2005),
17–21.

[11] Beginner’s Mind Collective and David Shaw. 2012. Makey Makey: improvising
tangible and nature-based user interfaces. In Proceedings of the sixth international
conference on tangible, embedded and embodied interaction. 367–370.

[12] William R Cook. 2007. Applescript. In Proceedings of the third ACM SIGPLAN
conference on History of programming languages. 1–1.

[13] Maitraye Das, Darren Gergle, and Anne Marie Piper. 2019. " It doesn’t win you
friends" Understanding Accessibility in Collaborative Writing for People with
Vision Impairments. Proceedings of the ACM on Human-Computer Interaction 3,
CSCW (2019), 1–26.

[14] Free Desktop. 2021. AT-SPI2. https://www.freedesktop.org/wiki/Accessibility/AT-
SPI2/

[15] Elizabeth Ellcessor. 2016. Restricted access: Media, disability, and the politics of
participation. Vol. 6. NYU Press.

[16] Linux Foundation. 2021. IAccessible2 API. https://accessibility.linuxfoundation.
org/a11yspecs/ia2/docs/html

[17] André Pimenta Freire, Renata Pontin de Mattos Fortes, Debora Maria Bar-
roso Paiva, and Marcelo Augusto Santos Turine. 2007. Using screen readers
to reinforce web accessibility education. ACM SIGCSE Bulletin 39, 3 (2007),
82–86.

[18] Gnome. 2021. Gnome Accessibility - ATK. https://wiki.gnome.org/Accessibility

https://www.nvaccess.org
https://developer.apple.com/library/archive/releasenotes/InterapplicationCommunication/RN-JavaScriptForAutomation/Articles/Introduction.html#//apple_ref/doc/uid/TP40014508
https://developer.apple.com/library/archive/releasenotes/InterapplicationCommunication/RN-JavaScriptForAutomation/Articles/Introduction.html#//apple_ref/doc/uid/TP40014508
https://developer.apple.com/library/archive/releasenotes/InterapplicationCommunication/RN-JavaScriptForAutomation/Articles/Introduction.html#//apple_ref/doc/uid/TP40014508
https://www.apple.com/accessibility/vision/
https://www.apple.com/accessibility/vision/
https://developer.apple.com/documentation/applicationservices/axuielement_h?language=objc
https://developer.apple.com/documentation/applicationservices/axuielement_h?language=objc
https://developer.apple.com/documentation/corefoundation?language=objc
https://developer.apple.com/documentation/corefoundation?language=objc
https://www.freedesktop.org/wiki/Accessibility/AT-SPI2/
https://www.freedesktop.org/wiki/Accessibility/AT-SPI2/
https://accessibility.linuxfoundation.org/a11yspecs/ia2/docs/html
https://accessibility.linuxfoundation.org/a11yspecs/ia2/docs/html
https://wiki.gnome.org/Accessibility


McHugh

[19] Andres Gonzalez and Loretta Guarino Reid. 2005. Platform-independent ac-
cessibility api: Accessible document object model. In Proceedings of the 2005
International Cross-Disciplinary Workshop on Web Accessibility (W4A). 63–71.

[20] Google. 2021. AccessibilityService. https://developer.android.com/reference/
android/accessibilityservice/AccessibilityService

[21] Alex Hadwen-Bennett, Sue Sentance, and Cecily Morrison. 2018. Making Pro-
gramming Accessible to Learners with Visual Impairments: A Literature Review.
International Journal of Computer Science Education in Schools 2, 2 (2018), n2.

[22] Foad Hamidi, Sanjay Kumar, Mikhail Dorfman, Fayokemi Ojo, Megha Kottapalli,
and Amy Hurst. 2019. SenseBox: A DIY prototyping platform to create audio
interfaces for therapy. In Proceedings of the Thirteenth International Conference
on Tangible, Embedded, and Embodied Interaction. 25–34.

[23] Amy Hurst and Shaun Kane. 2013. Making" making" accessible. In Proceedings of
the 12th international conference on interaction design and children. 635–638.

[24] AmyHurst and Jasmine Tobias. 2011. Empowering individuals with do-it-yourself
assistive technology. In The proceedings of the 13th international ACM SIGACCESS
conference on Computers and accessibility. 11–18.

[25] Henry Jenkins. 2009. Confronting the challenges of participatory culture: Media
education for the 21st century. The MIT Press.

[26] Jake Knapp, John Zeratsky, and Braden Kowitz. 2016. Sprint: How to solve big
problems and test new ideas in just five days. Simon and Schuster.

[27] Andrew J Ko. 2016. What is a programming language, really?. In Proceedings
of the 7th international workshop on evaluation and usability of programming
languages and tools. 32–33.

[28] Stacey Kuznetsov and Eric Paulos. 2010. Rise of the expert amateur: DIY projects,
communities, and cultures. In Proceedings of the 6th Nordic conference on human-
computer interaction: extending boundaries. 295–304.

[29] Richard E Ladner. 2015. Design for user empowerment. interactions 22, 2 (2015),
24–29.

[30] Michael J Lee and Andrew J Ko. 2011. Personifying programming tool feedback
improves novice programmers’ learning. In Proceedings of the seventh interna-
tional workshop on Computing education research. 109–116.

[31] Microsoft. 2021. Complete guide to Narrator. https://support.microsoft.com/en-us/
windows/complete-guide-to-narrator-e4397a0d-ef4f-b386-d8ae-c172f109bdb1

[32] Microsoft. 2021. Microsoft Active Accessibility. https://docs.microsoft.com/en-
us/windows/win32/winauto/microsoft-active-accessibility

[33] Microsoft. 2021. Microsoft UI Automation. https://docs.microsoft.com/en-us/
dotnet/framework/ui-automation

[34] Evgeny Morozov. 2013. To save everything, click here: The folly of technological
solutionism. Public Affairs.

[35] Brad A Myers, Amy J Ko, Thomas D LaToza, and YoungSeok Yoon. 2016. Pro-
grammers are users too: Human-centered methods for improving programming
tools. Computer 49, 7 (2016), 44–52.

[36] Brad A Myers and Jeffrey Stylos. 2016. Improving API usability. Commun. ACM
59, 6 (2016), 62–69.

[37] John F Pane, Brad A Myers, and Leah B Miller. 2002. Using HCI techniques to
design a more usable programming system. In Proceedings IEEE 2002 Symposia
on Human Centric Computing Languages and Environments. IEEE, 198–206.

[38] Betsy Phillips and Hongxin Zhao. 1993. Predictors of assistive technology aban-
donment. Assistive technology 5, 1 (1993), 36–45.

[39] Cynthia Putnam, Maria Dahman, Emma Rose, Jinghui Cheng, and Glenn Brad-
ford. 2015. Teaching accessibility, learning empathy. In Proceedings of the 17th
International ACM SIGACCESS Conference on Computers & Accessibility. 333–334.

[40] Mitchel Resnick, JohnMaloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn
Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian
Silverman, et al. 2009. Scratch: programming for all. Commun. ACM 52, 11 (2009),
60–67.

[41] Mitchel Resnick and Ken Robinson. 2017. Lifelong kindergarten: Cultivating
creativity through projects, passion, peers, and play. MIT press.

[42] Dennis M Ritchie, Brian W Kernighan, and Michael E Lesk. 1988. The C program-
ming language. Prentice Hall Englewood Cliffs.

[43] Brian J Rosmaita. 2006. Accessibility first! A new approach to web design. In
Proceedings of the 37th SIGCSE technical symposium on Computer science education.
270–274.

[44] Abir Saha and AnneMarie Piper. 2020. Understanding Audio Production Practices
of People with Vision Impairments. In The 22nd International ACM SIGACCESS
Conference on Computers and Accessibility. 1–13.

[45] Abir Saha and AnneMarie Piper. 2020. Understanding Audio Production Practices
of People with Vision Impairments. In The 22nd International ACM SIGACCESS
Conference on Computers and Accessibility (Athens, Greece) (ASSETS ’20). Associ-
ation for Computing Machinery, New York, NY, USA. To appear.

[46] Jaime Sánchez and Fernando Aguayo. 2005. Blind learners programming through
audio. In CHI’05 extended abstracts on Human factors in computing systems. 1769–
1772.

[47] Freedom Scientific. 2021. JAWS. https://www.freedomscientific.com/products/
software/jaws/

[48] Robert Sinclair, Patricia M Wagoner, and Brendan McKeon. 2008. Accessibility
system and method. US Patent 7,434,167.

[49] Andreas Stefik and Richard Ladner. 2017. The quorum programming language.
In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education. 641–641.

[50] Jeffrey Stylos and Brad Myers. 2007. Mapping the space of API design decisions.
In IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC
2007). IEEE, 50–60.

[51] Sara Vogel, Rafi Santo, and Dixie Ching. 2017. Visions of computer science
education: Unpacking arguments for and projected impacts of CS4All initiatives.
In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education. 609–614.

[52] Shirin Vossoughi, Meg Escudé, Fan Kong, and Paula Hooper. 2013. Tinkering,
learning & equity in the after-school setting. In annual FabLearn conference. Palo
Alto, CA: Stanford University.

[53] WebAIM. 2000. The WebAIM Million – An annual accessibility analysis of the top
1,000,000 home pages. https://webaim.org/projects/million/

[54] Marcelo Worsley, David Barel, Lydia Davison, Thomas Large, and Timothy Mwiti.
2018. Multimodal interfaces for inclusive learning. In International Conference on
Artificial Intelligence in Education. Springer, 389–393.

[55] Qiwen Zhao, Vaishnavi Mande, Paula Conn, Sedeeq Al-khazraji, Kristen Shino-
hara, Stephanie Ludi, and Matt Huenerfauth. 2020. Comparison of Methods for
Teaching Accessibility in University Computing Courses. In The 22nd Interna-
tional ACM SIGACCESS Conference on Computers and Accessibility. 1–12.

https://developer.android.com/reference/android/accessibilityservice/AccessibilityService
https://developer.android.com/reference/android/accessibilityservice/AccessibilityService
https://support.microsoft.com/en-us/windows/complete-guide-to-narrator-e4397a0d-ef4f-b386-d8ae-c172f109bdb1
https://support.microsoft.com/en-us/windows/complete-guide-to-narrator-e4397a0d-ef4f-b386-d8ae-c172f109bdb1
https://docs.microsoft.com/en-us/windows/win32/winauto/microsoft-active-accessibility
https://docs.microsoft.com/en-us/windows/win32/winauto/microsoft-active-accessibility
https://docs.microsoft.com/en-us/dotnet/framework/ui-automation
https://docs.microsoft.com/en-us/dotnet/framework/ui-automation
https://www.freedomscientific.com/products/software/jaws/
https://www.freedomscientific.com/products/software/jaws/
https://webaim.org/projects/million/

	Abstract
	1 Problem & Motivation
	2 Background & Related Work
	2.1 API & Programming Language Design
	2.2 Assistive Technology Design
	2.3 DIY Accessibility & Inclusive Making

	3 Uniqueness of the Approach
	3.1 Formative Work
	3.2 API Design
	3.3 Student Design Workshop

	4 Results & Contributions
	4.1 Formative Work
	4.2 V11 Design & Features
	4.3 Student Design Workshops
	4.4 Discussion & Future Work

	References

